杏彩体育注册
您的位置:首页 > 杏彩体育注册

杏彩体育:简读光干涉、衍射原理

  • 杏彩体育注册:简读光干涉、衍射原理
  • 杏彩体育官网注册:简读光干涉、衍射原理
  • 杏彩体育:简读光干涉、衍射原理
详细介绍

  ,其中有一个如从A点到B点的长度我们叫做波长,波长与频率相关,即与光的颜色有关。 而光波从A点走到B点,等于走了一个波长的长度,相位刚好也改变了2π,这是最基本的知识应该不用再多做介绍。

  好,接下来进入正题,我们来看看光的干涉是如何发生的。 以图1为例,图中黑色和蓝色的电磁波,在空间发生干涉,会发生什么? 刚好干涉相消; 如果是蓝色和红色的电磁波发生干涉,那么就会形成一个新的幅值更高的正弦波。 这里就可以简单推断出2个干涉需要满足的条件:

  问题来了! 第一个问题,前面提到的黑色和蓝色电磁波发生干涉,刚好干涉相消,从干涉条纹来看是一片黑,即没有任何光强,也就是意味着没有能量了? 这是不是违背了能量守恒定律? 答案当然是不违背的。 其实我们分析的都只是电场分量,而真正光的形式是这样的,能量不仅只有电场,还有磁场的:

  好,现在分为二种情况分析刚才的干涉相消:对向而行和同向而行; 先分析对向而行,结合图2和图3(传播方向相反),如果要让干涉相消,即电场矢量方向相反,那么我们就会发现磁场分量的振动方向是相同的,所以电场分量干涉相消,其实是把电场的能量全部转移到磁场上去了,所以总能量依旧是守恒的。 光纤的特性参数有哪些?

  接下来分析同向而行的情况,如果你用上面的方式套用的话,你会发现电场矢量干涉相消,磁场也干涉相消,能量真的消失了? 不是,原因在什么地方? 继续举例子,看图说线 电磁波干涉示意图

  我们通过光学系统让光产生干涉,发现在右侧半反半透镜的上下2个面总会有一个干涉相消、一个干涉相涨。这里需要说明一点,当光从光疏介质入射到光密介质反射时,会有半波损失,即会改变π相位,从光密介质入射到光疏介质时,相位不发生变化。所以,总结一下,光干涉本质不是光子的直接湮灭,而是能量的再分配!

  那么,我们再来看衍射光的理论分析图(图7),衍射光在经过小孔AB后会朝各个方向传播,假设衍射光是平行传播的,那么到达像面的是O点,显而易见,到达这个点的衍射光是没有相位差的,自然是亮条纹。接着增大θ角,显然A点衍射光和B点的衍射光达到像面Q点的光程是不一样的,所以我们用半波带法来分割这个衍射光,即光程差为半个波长为宽度视作一个光源,那么AA1可以看做一个子光源,A1A2可以看做一个子光源,自然这2个光源的相位刚好相反,即干涉相消,所以随着θ角的增大,光程差会发生变化,条纹会亮暗相间。

  接下来回答为什么孔越小,衍射越明显。反一下就是孔越大,衍射现象越不明显。衍射现象明不明显,我们一般是用光的强度来判断。如图7,如果小孔AB可以划分为11个半波带,那么其中10个干涉相消,只剩1个还在,那么这一级应该是亮条纹,能量用面积上来理解就是1/11;如果小孔AB只可划分5个半波带,那么亮条纹能量面积是1/5。所以得出结论:孔越小,衍射越明显。根据这个半波带法,还可以得出另一个结论:当小孔大小不变的情况下,波长越长,被分割的半波带数量越少,自然单个半波带能量面积越大,衍射现象越明显。

  多缝衍射最经典的例子就是光栅。那我们现在以光纤光栅为例,来看看光纤光栅是怎么工作的以及有什么用途。阵列波导光栅(AWG)的

  根据上一期光纤传感中的光传输原理,不仅需要满足全反射条件,而且需要满足一定的相位条件。这个相位条件,也可以根据图9推导出来,即两束光的光程差要是波长的整数倍才能干涉相涨:

  由于衍射光0级和1级的光强相对大一点,所以2级以后的衍射光几乎忽略不计。当取k=1时,我们可以得到衍射光的波长与光栅周期d和折射率、角度有关系。显然,如果要1级衍射光能够在光纤中反向传输,那么光线必须和入射光线要平行(光纤中的相位匹配条件)。

  根据公式想象一下,我们总会有那么个波长的光线满足这个角度后向传输,这个波长我们就叫做布拉格波长,这种反射式的光纤光栅也叫做布拉格光纤光栅。这里需要再说明下,光其实是很神奇的,各个波长的光都会有各自的衍射光,但是由于其他波长的衍射光没有满足光纤传输干涉相涨的条件,所以就不往1级衍射光这个方向走了,全部往0级衍射光方向传输。

  传输原理同上,我们同样会得到这么个波长使得其满足光纤中传输的条件,且这个波长传输的角度不再是在光纤纤芯中全反射,而变成了在包层中全反射,这就是包层模的模式。而包层模式的光会在很短距离内衰减损耗掉,所以在光纤的接收端我们得到了除了这个波长的光

  声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉

  现象,能够对微小的表面高度差异进行精确测量,并得出精准的尺寸和形态数据。对于超光滑透明微光学器件的测量来说,3d光学轮廓仪不仅具备高精度和高分辨率的特点,还能够快速、无损地获得物体的三维形貌信息。

  、偏振、双折射等与光的传播性有关的一系列重要现象。 电磁波--电磁场是E和B的振动由近及远传播的过程 电矢量叫做光矢量,光波是横波。 从波动的观点得到光的模式,与从光子的观点得到光子的量子状态是相同,两者

  光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。

  原理解析 /

  本文档的主要内容详细介绍的是光谱学基础知识的详细资料说明。光与原子、分子作用的三种过程1、光是一种电磁波(横波)光与物质的相互作用主要是电场E的作用;电场E的振动方向定义为光的偏振方向 光的波动理论可以成功的解释光的

  此外,由于光刻加工分辨率直接关系到芯片特征尺寸大小,而光刻胶的性能关系到光刻分辨率的大小。限制光刻分辨率的是光的

  全息投影技术(front-projected holographic display)也称虚拟成像技术,是利用

  原理记录并再现物体真实三维图像的技术。其最大的优势就是无需佩戴3D全息眼镜,便可多角度的浏览三维的立体影像。

  原理 /

  、透射、反射型(见表1),大多数采用反射型器件。MOEMS在过去几年中已获得显著发展。近几年,由于对高速率通信和数据传输需求的增长,大大激发了对MOEMS技术及其器件的研发。已开发出所需的低损耗、低EMV敏感性、低串话的高数据率

  在近场区域,光斑的形状和大小与激光器出口处的光斑形状及传播距离有关。典型地,近场光斑会有一个较大的尺寸和较不规则的形状。这是因为激光束在近场距离内还未完全发散,产生了强烈的

  效应。近场光斑中的光强分布通常不均匀,在中心附近具有较高的亮度。随着距离的增加,光斑进入远